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Abstract

After discussing some general problems for heterotic compactifications involving fivebranes we construct bundles, built as
extensions, over an elliptically fibered Calabi–Yau threefold. For these we show that it is possible to satisfy the anomaly cancellation
topologically without any fivebranes. The search for a specific Standard Model or GUT gauge group motivates the choice of an
Enriques surface or certain other surfaces as base manifold. The burden of this construction is to show the stability of these bundles.
Here we give an outline of the construction and its physical relevance. The mathematical details, in particular the proof that the
bundles are stable in a specific region of the Kähler cone, are given in the mathematical companion paper math.AG/0611762.
c© 2007 Elsevier B.V. All rights reserved.
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1. On problems caused by fivebranes and the H-field

Let us recall first some problems with fivebranes and the H -field which, although known in principle, have
sometimes been neglected in the literature. These problems lead to some difficulties in the usage of bundles V (say
in the observable sector) over a Calabi–Yau space X for a heterotic string compactification. Apart from the standard
embedding F = R the anomaly cancellation condition leads in general (already when read just on a cohomological
level) to the occurrence of a fivebrane class W . We argue that this enforces the existence of a non-vanishing H -field
which is of a markedly singular character. Even when it is possible to avoid this (for example by interpreting this class
W as the c2(Vhid) of a hidden bundle) one encounters still the same problematic occurrence of the H -field: this is
when one realizes that the anomaly condition has actually to be solved on the form level already. A non-trivial H -field
however is known to lead, via supersymmetry, to compatibility conditions on the underlying space geometry X , which
turns out to be non-Kähler. This has the consequence that the usual Donaldson–Uhlenbeck–Yau (DUY) theorem is
no longer applicable. This theorem assured the solvability of the equation of motion Fab̄ Jab̄ =

1
2 F ∧ J 2

= 0 on
the form level from the condition c1(V )J 2

= 0 on the cohomological level for bundles V stable with respect to a
suitable Kähler class J . A generalization for the non-Kähler case [2] gives the solvability of the equation of motion
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for X having a Gauduchon metric, using an appropriate stability notion. Still one has to solve the non-linear anomaly
equation exactly in a manner which goes beyond the perturbative arguments arguing by corrections order by order [1].
Recently first steps in that direction were made [26].

1.1. Problems when fivebranes are present

Besides solving the equation of motion F ∧ J 2
= 0, the field strength F must also obey the anomaly equation

d H =
α′

4
(tr R ∧ R − tr F ∧ F) . (1.1)

Many known vector bundle constructions, such as the spectral cover method, explicitly violate the ensuing topological
condition c2(X) = c2(V ). So one needs to introduce a number of space–time filling fivebranes and has to use the
generalized anomaly equation

d H =
α′

4

(
tr R ∧ R − tr F ∧ F + 16π2δW

)
. (1.2)

Here a further 4-form arises which is supported on the codimension four world-volume of W ; this is a 4-form with
distribution coefficients, i.e. a current. The possibility of having a W 6= 0 was first treated on a computational level
in [3].

The necessary condition for solving (1.2) is the corresponding integrability condition

c2(X) = c2(V ) + W (1.3)

(assuming c1(V ) = 0) where W has to be realizable by an effective class of holomorphic curves. However, the
condition actually to be solved is (1.2) on the form level.

The presence of fivebranes prevents heterotic models from being interpreted as perturbative non-linear sigma
models. Studies of stability of (0, 2) models usually assume the absence of fivebranes. Especially problematic is
that the delta function δW is not cancelled by another term on the right hand side which indicates that one cannot have
a consistent solution without an H -field

W = c2(X) − c2(V ) 6= 0 H⇒ H 6= 0. (1.4)

The non-trivial H -field must fulfil even d H 6= 0. More precisely, H must be chosen such that d H contains the relevant
current. The singular character of H becomes especially severe when one realizes that in (1.2) a consistent H -solution
occurs simultaneously on the right hand side, inside the connection with torsion ω+aH from which the tr R ∧ R-term
is computed (there is an important issue in this framework as to which a has to be used in different places; for our
purposes we do not need to enter this discussion).

One solution of this singularity problem, caused by the current contribution, could lie in dissolving the delta-
function-like fundamental brane (given by the small instanton) into a smooth solitonic (gauge-)field configuration.
However, although such fivebrane contributions W can occur as singular limits of gauge bundles, where (a part of) the
curvature term tr F ∧ F degenerates to a delta-function source, we are not concerned here with such small instanton
transitions. These change the rank (V ) and/or c3(V ) [3,8,9]; so if one insists on certain values for these invariants
of V(obs) (say from phenomenological investigations in the observable sector) giving a W 6= 0, it is of no help to
change to another bundle Ṽ(obs) where these phenomenologically decisive invariants differ and just W is absorbed into
c2(Ṽ(obs)).

One route, employed in the present paper, for avoiding the problem at least on the cohomological level is to
construct a V with c2(X) − c2(V ) = 0. Alternatively the problem could be circumvented if one could solve the
anomaly constraint with the help of a second bundle in the hidden sector which realizes the class W as c2(Vhid)

(cf. also [19]), leaving V = Vobs intact. Thereby one stays within the framework of perturbative (0, 2) models
characterized by stable holomorphic bundles (V, Vhid) of c1(V ) = c1(Vhid) = 0 (this condition can be relaxed)
with

c2(V ) + c2(Vhid) = c2(X) (1.5)

(cf. in this connection also [30]). This leads therefore to the following general problem:



2138 B. Andreas, G. Curio / Journal of Geometry and Physics 57 (2007) 2136–2145

• Suppose an effective holomorphic curve class (a sum of irreducible holomorphic curves with non-negative integral
coefficients) is given1 which represents the compact support of the (space–time filling) fivebrane and whose
cohomology class is denoted by

W ∈ H4(X, Z). (1.6)

When can W be represented as the second Chern class of a vector bundle (of c1(Vhid) = 0)

W = c2(Vhid)? (1.7)

Here Vhid and V have to be stable with respect to the same Kähler class.

Although a precise, or at least sufficient condition is not known, one knows a necessary condition: a holomorphic
vector bundle Vhid (stable w.r.t. J ) satisfies the Bogomolov inequality

0 ≤ c2(Vhid)J. (1.8)

The ensuing necessary condition 0 ≤ W J is satisfied in our case as W was an effective class.
In [25] the conjecture is put forward that a stable bundle (more precisely reflexive sheaf) Vhid of rank rhid and2

c1(Vhid) = 0 exists if one has for some ample class D that

c2(Vhid) −
rhid

24
c2(X) = rhid D2. (1.9)

Assuming this conjecture to be true (1.7) can be solved if (1.9) holds for W . Proving (1.7) this way, one needs not
only W effective with 0 ≤ W J ≤ c2(X)J (the latter from 0 ≤ c2(V )J ), but even the following condition (note
0 ≤ c2(X)J by the Miyaoka–Yau theorem):

rhid

24
c2(X)J

!

≤ W J ≤ c2(X)J. (1.10)

1.2. Problems when no fivebranes are present

Avoiding fivebrane contributions is of course not the end of the problems for consistent heterotic string
compactifications caused by the anomaly cancellation requirement. For this let us assume that no need arises for
a current representing a fivebrane contribution (something which is already cohomologically detectable); or assume
that one has succeeded in representing such a contribution by a bundle in the hidden sector. Then still one has the
problem that (1.2) actually has to be solved locally, i.e., on the form level. If one is not in the quite exceptional case
of having an F 6= R with tr F ∧ F = tr R ∧ R locally, this will necessitate to turn on of a non-trivial H -field (though
this time smooth and not being singular to balance by its d H a delta-function contribution δW ).

However, having now a non-trivial H -field turned on, the compatibility conditions (stemming from the requirement
of supersymmetry) concerning the geometry of the underlying compactification space and the H -field configuration,
demand that X is non-Kähler [1]; cf. also [21–23]. The severe consistency problem stems from the fact that the
non-trivial H -field (induced from a mismatch between tr R ∧ R and tr F ∧ F) has actually to be used at the same
time consistently on the right hand side of the anomaly balance for the connection ω + aH from which tr R ∧ R is
computed. Here ω is the torsion-free spin connection and H understood as a 1-form by suitable contractions with
vielbeins. On the level of the 3-form H itself this amounts to a cubic relation H = d B + α′ (Ω3(ω + aH) − Ω3(A))

with the corresponding Chern–Simons terms (where Ω3(A) = tr(A ∧ F −
1
3 A ∧ A ∧ A)).

Here we are in the case that the Hodge type of the H field is (2, 1) + c.c. as d H has to be of type (2, 2). (More
generally one may consider also the case of a Hodge type (3, 0) + c.c. which could be cancelled in the complete
square part of the Lagrangian by a non-trivial gaugino condensate vev [21,23]). This has the consequence that the
DUY theorem, assuring for stable bundles the solvability of the equations of motion from a topological condition,
is no longer applicable. Here one has to note that for X being non-Kähler already the notion of stability is slightly

1 Strictly speaking the assumption on W is more specific as it is c2(X) − c2(V ) for a stable bundle V .
2 In addition c3(Vhid) can be conjecturally chosen freely if it is < 16

√
2

3 rhid D3.
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modified as the would-be Kähler form J is no longer closed with corresponding consequences for
∫

X c1(V )J 2 and
the notion of slope [2,29]. For steps in the direction of a generalization, cf. [26] for the case of a T 2-fibration with
base B a K 3 surface, which from the normal (H = 0) perspective would be a rather degenerate exceptional case.

Corresponding problems in the strongly coupled heterotic set-up
The need to solve the anomaly constraint actually locally and not only in the global (cohomological) balance

becomes especially palpable in the case of heterotic M-theory where

(dG)I J K L 11 ∼ κ
2
3

(
1∑

i=0

δ(x11 − xi )

(
1
2

tr Ri ∧ Ri − tr Fi ∧ Fi

)
+ 16π2

m∑
k=1

δ(x11 − xk)δWxk

)
∧ dx11.

The (space–time filling) fivebrane contribution W consists of m components Wxk , supported (compactly) on various
(itself not necessarily irreducible) holomorphic curves Ck (of dual 4-forms δWk in Xk) lying in the Calabi–Yau space
Xk over the point xk of the interval I = [x0, x1]. Here the standard embedding Fobs = R, “spin in the gauge”, can
no longer be a solution, although still fulfilling the global balance. The reason is that the local character, here along
I , of the condition becomes especially pronounced, demanding that at each end of the interval one of the individual
E8 bundles Vi cancels the term 1

2 tr Ri ∧ Ri . The idea of representing W as c2(Vhid) becomes here obsolete as this
strategy is not local in I , let alone local in X . (For some solutions with W = 0 locally in I , though not in X , cf. [27].)

Now, considered locally in I , it seems that fivebrane components Wxk can easily be balanced consistently by a
corresponding G2,2;0-contribution3 of the form step function θ(x11 − xk) times the (2, 2) form δWxk

. Similarly, to
absorb a mismatch 1

2 tr Ri ∧ Ri − tr Fi ∧ Fi one can also use a boundary contribution G = θ times (2, 2) which
therefore, it seems, considered just locally in I , could absorb both types of contribution from the right hand side.

However, actually the various contributions, locally constant along x11, have to fit together in the “upstairs picture”
on S1 with a Z2 action, i.e., the various jumps in total have to compensate each other. As G is odd, jumps in the bulk
cancel mutually and the fixpoint contributions remain. So, having no H -type boundary components in G, one ends up
with

0 =

1∑
i=0

(
1
2

tr Ri ∧ Ri − tr Fi ∧ Fi

)
+ 16π2

∑
xk=x0 or x1

δWxk
. (1.11)

As the smooth and delta-function parts have to cancel individually, one gets (1.11) just for the smooth terms and no
fivebranes on the boundaries (anti-fivebranes being forbidden).

1.3. Discussion

Let us emphasize that W = 0, seemingly avoiding G 6= 0, is satisfied in the aforementioned models [27] only at
the cohomological level. Realizing that the condition to be solved is on the differential form level, one does not get
G = 0 models. Similar remarks apply to older (0, 2) models which solve the anomaly without fivebranes but only
on the cohomological level, and to the models we present in this paper. Nevertheless let us point out two things. The
ability to avoid the delta-function contribution already reduces substantially the problem of potential inconsistencies
when one tries to solve the anomaly constraint (1.2) as the problem with singularities occurring on both sides in
different orders is avoided. The general expectation is then that some relevant features of the models (understood in
the naive H = 0 sense) persist, despite the remaining necessity to adjust, perhaps order by order, a non-trivial (but
now smooth) H -field configuration. But note the caveat that the radius will be fixed to a finite value, so there will
be no large radius limit for a perturbative supergravity treatment; also a stability notion for X non-Kähler is more
subtle [29]. The same philosophy underlies procedures for checking that the number of fivebranes wrapped on elliptic
fibers in heterotic spectral cover models matches the number of threebranes in a dual F-theory model [3,31]; or also
the numerous phenomenological studies of heterotic compactifications done so far. The other point, specific to our

3 Boundary G2,1;1-components of type H (2,1)(+c.c.) times δ(x11 − x0) ∧ dx11, if possible, would bring one back to the previous problems, so
we assume these to be absent (also with such a contribution the connection ω + aδ(x11 − xi )H used in 1/2 tr Ri ∧ Ri would have a problematic
delta-function singularity). So a potential consistency problem from the connection ω + aH is not induced as H = 0. Still the volume modulus can
be stabilized (without H (2,1)

6= 0, X non-Kähler) by worldsheet instantons [23] or the S-Track mechanism [24].
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W = 0 models, is that they live still on elliptically fibered Calabi–Yau spaces. For many investigations touching
more conceptual questions (dualities with other string models is a prominent example) these seemingly more abstract
compactifications have turned out to be more suitable than Calabi–Yau spaces given by embeddings in a weighted
projective space (or products of them).

In Section 2 we discuss the various options for the (bases B of the elliptically fibered) spaces over which we build
our bundles. In Section 3 we recall some notions related to stability and describe in Section 4 the way we build our
bundles which enable us to get W = 0 (this contrasts with the fact [3] that bundles built with the spectral cover
method give W 6= 0). There the stability of the bundles could be established more directly [10] whereas here the
issue of stability becomes a major technical point to which we do full justice only in the mathematical companion
paper [28]. In Section 5 we give for B an Enriques surface the relevant stability results and show that within our class
of bundles W ≥ 0 is violated. Stability results and W = 0 examples for other bases are given in Section 6.

2. The elliptic Calabi–Yau space over various bases

As our procedure to build bundles on X involves an extension of bundles Up = π∗E p which are themselves pull-
backs of bundles E p on the base B, one has to ensure the stability of such pull-back bundles Up if E p is stable. For
this we distinguish two cases among our set of bases, consisting of Hirzebruch surfaces Fr (r = 0, 1, 2), del Pezzo
surfaces d Pk (k = 0, . . . , 8) and the Enriques surface E . The search for a specific gauge group, be it of a GUT theory
or of the Standard Model, motivates the choice of a Hirzebruch surface or the Enriques surface as base. On the one
hand we will treat the Enriques surface E which is also of special physical importance as a GUT group SU (5) can be
broken to the Standard Model group because of π1(X E ) = Z2. On the other hand we will treat in Section 6 the case
where the anticanonical bundle is ample, i.e. the remaining cases except F2.

2.1. The case of B an Enriques surface

Let us describe the different physical and mathematical issues related to the use of the Enriques surface as base.

2.1.1. On the physical motivation for the Enriques surface
One approach to realizing the Standard Model gauge group within heterotic string compactifications is to build a

bundle V of structure group SU (5), leading to an unbroken gauge group given by the grand unified group SU (5) in
the observable sector. In that case π1(X) = Z2 allows for a Wilson line, breaking the commutator SU (5) (in E8) of a
structure group SU (5) to the Standard Model gauge group. For this one needs a Calabi–Yau space whose non-trivial
fundamental group contains a Z2. X is non-simply connected only if the base B of the fibration is given by an Enriques
surface E where π1(X) = π1(B) = Z2 (where c1 := c1(B) is a two-torsion class).

This approach is in contrast to the procedure where one starts from a simply connected Calabi–Yau threefold X ′

having a free involution τ from which the required non-simply connected Calabi–Yau space X is built as X = X ′/Z2.
The existence of τ is related to the existence of a second section of the elliptic fibration [11–18]. Then one searches
for τ -invariant bundles having six generations.

By contrast, in the case of the Enriques Calabi–Yau, one searches directly on X for bundles of net generation
number Ngen = ±3. This, however, led for spectral bundles to the following problem. From the mismatch of
anomaly cancellation between c2(V ) and c2(X) one has to introduce a number of fivebranes of total cohomology
class W = wBσ + a f F . One has the effectivity condition wB = 12c1 − η = −η ≥ 0 where η ∈ H2(B, Z) is a datum
describing the bundle (the spectral surface C has cohomology class nσ + η where n is the rank of V ). η must be an
effective class satisfying η ≥ nc1 which for n even reduces to η ≥ 0 and for n odd to η ≥ c1; so η = 0 or c1, giving
Ngen = λη(η − nc1) = 0. (For another attempt cf. [19].)

2.1.2. Mathematical details on the Enriques surface
Consider standard (fibre type A) elliptically fibered CY spaces X with one section [3] and base given by an Enriques

surface [20], i.e., h1,0(B) = 0 and K 2
B = OB . B has non-trivial Hodge numbers h1,1

= 10, h0,0
= h2,2

= 1, so c2
1 = 0

and c2 = 12, and middle cohomology

H2(B, Z) = Z10
⊕ Z2 with intersection lattice Γ 1,1

⊕ E (−)
8 =

(
0 1
1 0

)
⊕ E (−)

8 (2.1)
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(orthogonal decompositions). Further φc1 = 0 for all φ ∈ H2(B, Z). B is always elliptically fibered with fibre f over
b = P1. However two of the fibers, f1 and f2, are double fibers: f = 2 fi , which prevents B from having a section
and c1 = f1 − f2 is not effective.

On a generic (‘unnodal’) B no smooth rational curves exist and all irreducible curves C have C2
≥ 0. The integral

classes in one of the two components of the cone in H2(B, R) defined by C2
≥ 0 constitute the effective cone

(adding the torsion class c1 does not matter for this if C 6= 0). For C nef (i.e., DC ≥ 0 for all curves C on B) |C | is
base-point-free, C is ample if also C2

≥ 6 [20]. C = xa + y f = (x, y) ∈ Γ 1,1 is nef for x, y ≥ 0.
B can be represented as the quotient of a K 3 surface by a free involution. The corresponding π1(B) = Z2 is

inherited by the elliptic Calabi–Yau space X which itself is a quotient by a free involution on K 3 × T 2 (also acting as
z → −z on the T 2). The holomorphic 2-form Ω2 of K 3 being odd, the holomorphic 3-form Ω2 ∧ dz is preserved, the
quotient X being a Calabi–Yau space of vanishing Euler number.

3. The condition of stability

We will choose as polarization J = zσ +π∗ H where H (chosen in the integral cohomology) is in the Kähler cone
CB of the base B and z ∈ R>0. For an elliptically fibered Calabi–Yau space X one has that J is a Kähler class if [18]

J ∈ CX ⇐⇒ z > 0, H − zc1 ∈ CB . (3.1)

Stability of a bundle V (with respect to J ) means µJ (V ′) < µ(V ) for all coherent subsheaves V ′ of V of
rk V ′

6= 0, rk V . Here µ(V ) =
1

rk V

∫
c1(V )J 2 is the slope of V with respect to J . Similarly semistability is defined

by the condition µJ (V ′) ≤ µ(V ).
A bundle V stable w.r.t. J satisfies the Bogomolov inequality

c2(V )J ≥ 0. (3.2)

The decomposition of the fivebrane class W = wBσ + a f F = c2(X) − c2(V ) becomes for B an Enriques surface
12F − c2(V ) which gives then

c2(V )J = −wB H + z(12 − a f ). (3.3)

For bundles built by the spectral cover construction one knows by [10], Thm. 7.1, that suitable J must have z
sufficiently small (“spectral polarizations”). But if z has to be chosen negligible small, only wB = 0 is possible
as −wB H ≤ 0 by the requirement wB ≥ 0. The latter stems from the condition that the fivebrane class is effective.
On the other hand, below we will assure stability for z sufficiently large; note that on B the Enriques surface there
will be no problem then with the criterion (3.1) when just choosing H ∈ CB .

Let us consider now the stability of zero-slope bundles V constructed as extensions

0 → U → V → W → 0. (3.4)

Here U and W are assumed to be stable. Necessary conditions for the stability of V are that

• µ(U ) < 0
• the W of µ(W ) > 0 is not a subbundle of V , i.e., the extension (3.4) is non-split.

4. Bundles built as extensions

As mentioned earlier, one problem in heterotic model building, especially on elliptically fibered Calabi–Yau spaces
X , is the occurrence of a number of space–time filling fivebranes [3], preventing the model from being interpreted as a
perturbative non-linear sigma model. More specifically, this problem occurs within the spectral cover construction
[3,4] (equivalently understood as a relative Fourier–Mukai transform [7]). The advantage of this method is an
improved flexibility in the explicitly computed net generation number [5,6].

This problem is circumvented in the present paper as follows. We define a stable SU (n) bundle V as a non-trivial
extension of bundles U and W of lower rank, especially when W is a line bundle. The question of stability, and
already the existence of a non-split extension, turns out to be non-trivial. The bundles U and W are constructed as
pull-backs from the base B, twisted by certain line bundles. For B a Hirzebruch surface Fr we find GUT models
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with chiral matter, and for B the Enriques surface the Standard Model gauge group. In the GUT case it is possible
to avoid fivebranes in the anomaly constraint. Thereby one stays within the framework of perturbative (0, 2) models,
characterized by stable holomorphic bundles V of c1(V ) = 0 (this condition can be relaxed) satisfying

c2(V ) = c2(T X). (4.1)

Now, in the spectral cover construction the bundle decomposes on the generic fibre F as

V |F =

n⊕
i=0

OF (pi − p0) with
∑

pi = p0 (4.2)

and is adiabatically extended along the base: the system of the (pi ) becomes base-point dependent, leading to an
n-fold cover C of B, including a twist by a line bundle OB(η) on B.

A different starting point is to choose V on F as

V |F =

⊕
OF (xi p0) with

∑
xi = 0. (4.3)

One of the simplest possibilities is to choose xi =: −x for i = 1, . . . , n and x0 = nx . Thus, rewriting (4.3), one starts
from a split short exact sequence

0 −→ On
F ⊗OF (−xp0) −→ V |F −→ OF (nxp0) −→ 0. (4.4)

To spread this out along B one chooses now Vn+1 as the extension

0 −→ π∗En ⊗OX
(
−xσ − π∗α

)
−→ Vn+1 −→ OX

(
n(xσ + π∗α)

)
−→ 0. (4.5)

Here the non-trivial information about the bundle along the direction B is encoded in En , including a twist by a line
bundleOB(α) of the base. More generally, one may consider the case where the set of the xi partitions into two sets of
xi = px for qi’s and xi = −qx for pi’s, which globally corresponds to the extension (with Up = π∗E p, Wq = π∗Eq
and D = xσ + π∗α)

0 −→ Up ⊗OX (−q D) −→ Vp+q −→ Wq ⊗OX (pD) −→ 0 (4.6)

(where one demands D J 2 > 0 so that the slope condition µ(Up ⊗O(−q D)) < 0 is fulfilled). So the class of bundles
we consider is given by bundles Vp+q of rank p + q defined as non-trivial extensions (4.6) of stable bundles Up and
Wq of rank p and q with c1(Up) = 0 = c1(Wq), suitably twisted by powers of a line bundle O(D) so as to preserve
c1(Vp+q) = 0.

One can consider in particular the case that Up and Wq are pull-backs π∗E p, π∗Eq of bundles on B. Then π∗E is
(semi)stable if E is (semi)stable on B with respect to H , say for B the Enriques surface; the detailed arguments for
this and all mathematical statements concerning the stability proofs and non-split conditions below are given in the
mathematical companion paper [28]. Later we will actually show stability of Vp+q only for q = 1.

One finds with c2(Up) = uF and c2(Wq) = wF

c2(Vp+q) = −
1
2

pq(p + q)D2
+ (u + w)F. (4.7)

Let us now come to the physical conditions. One must ensure the effectivity of the class

W = wBσ + a f F = c2(X) − c2(V1) − c2(V2) (4.8)

of the fivebrane. Assuming for simplicity no hidden sector bundle one finds as components

wB = 12c1 +
1
2

pq(p + q)x(2α − xc1), a f = c2 + 11c2
1 +

1
2

pq(p + q)α2
− (u + w). (4.9)

For the net chiral matter content one finds as generation number

Ngen =
1
2

c3(Vp+q) =
pq
6

(p2
− q2)D3

+ x(qu − pw) +
1
2

c3(Up) +
1
2

c3(Wq). (4.10)
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Note that in the special case that Up and Wq are pull-backs from the base (so that they have vanishing third Chern
class) one finds Ngen ∼ x over the Enriques base.

Below we will prove stability of Vp+q for q = 1 given a stable bundle Up. To get a concrete stable bundle Up we
take Up = π∗E p. Over B with K −1

B ample one gets then GUT models with W = 0 and Ngen 6= 0 (cf. Section 6).
Over the Enriques base one can get the Standard Model gauge group; then, however, one encounters the side effect
that Ngen will run just with x as wB does; furthermore, only the case wB = 0 would be allowed (as will be seen
below), giving x = 0; for x = 0 stability, however, cannot be assured.

5. Standard Model groups: Enriques base

For the case (p, q) = (n, 1), Vn+1 can be shown to be stable. So let Vn be a stable bundle of c1(Vn) = 0 and
D = xσ + π∗α and define Vn+1 as a non-split extension (here W1 = O)

0 → Vn ⊗O(−D) → Vn+1 → O(nD) → 0. (5.1)

Let us first discuss the non-split condition. For this assume Vn = π∗En with c1(En) = 0 and En stable. Then one
finds for x > 0 and for a := αH < 0 the index condition [28]

I := n − c2(E) +
n(n + 1)2

2
α2 > 0 (5.2)

for precisely when a non-split extension exists. If x ≤ 0 then Ext1
6= 0 exactly if I < 0.

Stability of Vn+1 and physical constraints
We note the following necessary condition: if Vn+1 is stable (so (5.1) is non-split) then

x 6= 0 H⇒ x · a < 0 (5.3)

where a := αH . Vn+1 has now specific stability regimes w.r.t. the Kähler class J = zσ + π∗ H

0 < x < −a −→
nx

−na + 1
H2

2
< z <

nx
−na

H2

2
(5.4)

−a < x < 0 −→
nx

−na
H2

2
< z <

nx
−na + 1

H2

2
. (5.5)

The physical constraints concern the effectivity of the fivebrane W = wBσ + a f F where

wB =
1
2

n(n + 1)x(2α − xc1) ≥ 0, a f = 12 +
1
2

n(n + 1)α2
− c2(E) ≥ 0 (5.6)

and the phenomenological value ±3 of the net generation number

Ngen = x
(

1
2

n(n2
− 1)α2

+ c2(E)

)
. (5.7)

Note that, as wB ≥ 0 requires therefore xα ≥ 0, one gets in view of (5.3)

wB ≥ 0 H⇒ x = 0. (5.8)

If a hidden sector bundle of the same type is turned on, the argument remains valid as wB =
∑2

i=1 ci xiαi ≥ 0 (with
ci > 0, c1 =

n(n+1)
2 ) gives wB H ≥ 0, a contradiction to (5.3).

x = 0 is the case for which the existence of stable bundles could not be assured above.

6. GUT groups: Working over B with ample K−1
B

In this section B denotes a surface with ample K −1
B . Now π∗E is (semi)stable on X with respect to J = zσ

+ π∗ H ∈ CX if E is (semi)stable on B with respect to H = hc1; here H − zc1 ∈ CB gives z < h. Given the fact
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that c1 is now no longer a two-torsion class, a greater numerical freedom between W and Ngen occurs; in particular
the common proportionality to the parameter x is lifted. Therefore it is possible here to have W = 0 and Ngen 6= 0.

Concretely the fivebrane class has components (assuming for simplicity Vhid = 0)

wB = 12c1 +
1
2

n(n + 1)x(2α − xc1), a f = c2 +
1
2

n(n + 1)α2
− c2(E) + 11c2

1. (6.1)

In contrast to the case of the Enriques base it is now possible to satisfy wB ≥ 0 while having x 6= 0. One finds now
W = 0 (just to get wB, a f ≥ 0 is easy) for the choices

α =

(
x2

2
−

12
n(n + 1)

)
c1

x
H⇒ wB = 0 (6.2)

c2(E) = c2 + 11c2
1 +

n(n + 1)

2
α2

H⇒ a f = 0. (6.3)

For instance, for building an SO(10) GUT model without fivebranes one can use the twist D = σ − π∗c1/2 and
a rank n = 3 bundle E on a base Fr of instanton number 104. Or one may construct an E6 GUT model without
fivebranes from using the twist D = 2σ and a plane bundle of c2(E) = 92. (One immediately checks the non-split
conditions.)

One gets furthermore that

Ngen = x
(

n(n2
− 1)

6

(
3α2

− 3xαc1 + x2c2
1

)
+ c2(E)

)
. (6.4)

Let us mention that one can carry through a similar program also for extensions by spectral bundles (without special
restrictions on the base surface B), leading to examples of stable bundles without fivebranes; cf. [28].

So the general lesson in all the different cases is similar: the greater numerical freedom provided by the twist and
the extension can allow one to have W = 0, the burden then is however to prove stability of the extensions [28].
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B. Andreas, D. Hernández Ruipérez, Fourier–Mukai transforms and applications to string theory, Rev. R. Acad. Cienc. Serie A. Mat. 99 (1)
(2005) 29–77. math.AG/0412328;
B. Andreas, The Fourier–Mukai transform in string theory, in: J.-P. Francoise, G.L. Naber, S.T. Tsou (Eds.), Encyclopedia of Mathematical
Physics, Elsevier, Oxford, 2006. hep-th/0505263.
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